Diffusion boundary layer of a rotating disk electrode as a thin-layer spectroelectrochemical cell.

نویسندگان

  • Ping Shi
  • Daniel A Scherson
چکیده

A UV-visible rapid scan spectrophotometer (RSS) was coupled to a Au rotating disk electrode (RDE) for monitoring at near-normal incidence the reflection-absorption spectrum of the diffusion boundary layer in [Fe(CN)(6)](4)(-) aqueous solutions over a potential region in which [Fe(CN)(6)](4-) oxidizes, generating highly absorbing [Fe(CN)(6)](3-) (lambda(max) = 420 nm). Measurements were performed under steady-state conditions at rotation rates, omega, in the range 300 <or= omega <or= 2500 rpm, yielding well-defined spectra displaying characteristic features of [Fe(CN)(6)](3-). In agreement with theoretical predictions, the absorbance A at lambda(max), using as a reference A(lambda(max)) for the spectrum recorded at a potential negative to the onset of [Fe(CN)(6)](4-) oxidation, was found to be proportional both to the current and also to omega(1/2) under conditions in which E was positive enough for the reaction to proceed under diffusion-limited control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Layers and Heat Transfer on a Rotating Rough Disk

The study of flow and heat transfer over rotating circular disks is of great practical importance in understanding the cooling of rotatory machinery such as turbines, electric motors and design and manufacturing of computer disk drives. This paper presents an analysis of the flow and heat transfer over a heated infinite permeable rough disk. Boundary-layer approximation reduces the elliptic Nav...

متن کامل

Oxygen reduction reaction on Pt/C at the presence of super paramagnetic of Fe3O4 nanoparticles for PEMFCs

In this paper the role of super paramagnetic iron oxide nanoparticles (SPI) on Platinum nanoclusters on activated carbon (Pt/C) for electrocatalytic oxygen reduction reaction was considered. Four composites of Pt/C and super paramagnetic iron oxide nanoparticles were prepared with the same total composites weight and different loading of Pt/C (1.2, 0.6, 0.4 and 0.3 mg ). The composite attached ...

متن کامل

Single walled carbon nanotube in the reaction layer of gas diffusion electrode for oxygen reduction reaction

In this paper, the effect of surface area of reaction layers in gas diffusion electrodes on oxygen reduction reaction was investigated. For this purpose, various amounts (0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5 and zero %wt of total loading of reaction layer) of single walled carbon nanotube (SWCNT) were inserted in the reaction layer. The performance of gas diffusion electrodes for oxygen reduction re...

متن کامل

Impact of anisotropy level of gas diffusion layer on the temperature distribution of a PEM fuel cell cathode electrode

Proton exchange membrane (PEM) fuel cells being employed in fuel cell vehicles (FCVs) are promising power generators producing electric power from fuel stream via porous electrodes. Structure of carbon paper gas diffusion layers (GDLs) applying in the porous electrodes can have a great influence on the PEM fuel cell performance and distribution of temperature, especially at the cathode side whe...

متن کامل

Magneto-Thermo-Elastic Stresses and Perturbation of Magnetic Field Vector in a Thin Functionally Graded Rotating Disk

In this paper, a semi-analytical solution for magneto-thermo-elastic problem in an axisymmetric functionally graded (FG) hollow rotating disk with constant thickness placed in uniform magnetic and thermal fields with heat convection from disk’s surfaces is presented. Solution for stresses and perturbation of magnetic field vector in a thin FG rotating disk is determined using infinitesimal theo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 76 8  شماره 

صفحات  -

تاریخ انتشار 2004